If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-41w=0
a = 1; b = -41; c = 0;
Δ = b2-4ac
Δ = -412-4·1·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-41}{2*1}=\frac{0}{2} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+41}{2*1}=\frac{82}{2} =41 $
| -1.1+y/8=(-13.9) | | 5=9+-w/3 | | -11x-16=-93 | | 36=4(2d-3) | | 2.9a-9.9a=11 | | 30/45=f/39 | | s^2+14s+24=0 | | x-6.8=-2.8 | | 3(x-5)=3x-15. | | 4/2=g/6 | | )−7x−3x+2=−8x−8 | | 0.5(x+6)=0.5x+3 | | u/6+11.1=(-8.1) | | 8x-12+(-2x)=1x | | X+1+3x=39 | | 4x—15=25 | | 2(y-1)+6y=-19 | | 3x^2-30x–72=0 | | 8=2+2a | | 8x-12+(-2x)=2(2x+5) | | 11x-110=50 | | x2-x-2=x-2 | | 3v-4=(-13) | | 7y-4(y+6)=10 | | 15+.1=55x | | 15+.1x=55x | | (7x+5)=(6x+20) | | -x^2-x+110=0 | | m=24✕3 | | –10(10+s)=–50 | | 3a^2=7-20a | | 2x-1=3/4=9 |